首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1447篇
  免费   30篇
  国内免费   142篇
化学   1321篇
晶体学   2篇
力学   56篇
综合类   5篇
数学   27篇
物理学   208篇
  2023年   64篇
  2022年   18篇
  2021年   57篇
  2020年   40篇
  2019年   28篇
  2018年   17篇
  2017年   23篇
  2016年   28篇
  2015年   31篇
  2014年   55篇
  2013年   56篇
  2012年   51篇
  2011年   65篇
  2010年   55篇
  2009年   114篇
  2008年   176篇
  2007年   101篇
  2006年   109篇
  2005年   84篇
  2004年   72篇
  2003年   39篇
  2002年   31篇
  2001年   38篇
  2000年   25篇
  1999年   26篇
  1998年   21篇
  1997年   20篇
  1996年   35篇
  1995年   30篇
  1994年   21篇
  1993年   18篇
  1992年   8篇
  1991年   11篇
  1990年   11篇
  1989年   12篇
  1988年   6篇
  1987年   4篇
  1986年   1篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1981年   2篇
  1970年   1篇
排序方式: 共有1619条查询结果,搜索用时 15 毫秒
1.
Abstract

A comprehensive study on essential oil samples extracted from Ridolfia segetum Moris (Apiaceae) collected in Tarquinia (Italy) is reported. In this study, a 30-hour, fractionated, steam distillation procedure for essential oil preparation was applied. The gas chromatographic-mass spectrometry analysis showed monoterpene o-cymene and phenylpropanoid dill-apiol as the major essential oil’s constituents revealing a new chemotype dependent on extraction duration. Great impact of the duration of the distillation process on chemical profile of essential oil was observed; prolonged distillation gives chemically more diverse essential oil samples. Preliminary microbiological evaluations of the essential oils samples revealed some activity, although not high, against Candida albicans.  相似文献   
2.
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandula angustifolia Mill., Syzygium aromaticum L., Foeniculum vulgare Mill., and Laurus nobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.  相似文献   
3.
Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography.  相似文献   
4.
A high‐expression epidermal growth factor receptor cell membrane chromatography using the silica gel with the average particle size of 3 μm as the stationary phase carrier coupled with high‐performance liquid chromatography and mass spectrometry was established for the online screening of epidermal growth factor receptor antagonists from Radix Scutellariae (Huang Qin in Chinese), a traditional Chinese medicine. In this study, the growth factor receptor cell membrane chromatography model using the smaller particle size carrier showed a higher efficiency for simultaneous screening baicalein, another one of the potential epidermal growth factor receptor antagonists from Radix Scutellariae extract besides wogonin, which was found in our previous work. The molecular docking result showed the occupancy site and binding mode of baicalein and wogonin with epidermal growth factor receptor tyrosine kinase were similar to gefitinib. The result of the assay for the in vitro inhibitory activity showed that baicalein and wogonin inhibited the growth of the high‐expression epidermal growth factor receptor cell in a dose‐dependent manner and even achieved a better inhibition effect than gifitinib in the low‐dosage range.  相似文献   
5.
The angiotensin-converting enzyme 2 (ACE2) has been identified as entry receptor on cells enabling binding and infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via trimeric spike (S) proteins protruding from the viral surface. It has been suggested that trimeric S proteins preferably bind to plasma membrane areas with high concentrations of possibly multimeric ACE2 receptors to achieve a higher binding and infection efficiency. Here we used direct stochastic optical reconstruction microscopy (dSTORM) in combination with different labeling approaches to visualize the distribution and quantify the expression of ACE2 on different cells. Our results reveal that endogenous ACE2 receptors are present as monomers in the plasma membrane with densities of only 1–2 receptors μm−2. In addition, binding of trimeric S proteins does not induce the formation of ACE2 oligomers in the plasma membrane. Supported by infection studies using vesicular stomatitis virus (VSV) particles bearing S proteins our data demonstrate that a single S protein interaction per virus particle with a monomeric ACE2 receptor is sufficient for infection, which provides SARS-CoV-2 a high infectivity.  相似文献   
6.
The design of ion-selective membranes is the key towards efficient reverse electrodialysis-based osmotic power conversion. The tradeoff between ion selectivity (output voltage) and ion permeability (output current) in existing porous membranes, however, limits the upgradation of power generation efficiency for practical applications. Thus, we provide the simple guidelines based on fundamentals of ion transport in nanofluidics for promoting osmotic power conversion. In addition, we discuss strategies for optimizing membrane performance through analysis of various material parameters in membrane design, such as pore size, surface charge, pore density, membrane thickness, ion pathway, pore order, and ionic diode effect. Lastly, a perspective on the future directions of membrane design to further maximize the efficiency of osmotic power conversion is outlined.  相似文献   
7.
Polycrystalline metal–organic framework (MOF) layers hold great promise as molecular sieve membranes for efficient gas separation. Nevertheless, the high crystallinity tends to cause inter-crystalline defects/cracks in the nearby crystals, which makes crystalline porous materials face a great challenge in the fabrication of defect-free membranes. Herein, for the first time, we demonstrate the balance between crystallinity and film formation of MOF membrane through a facile in situ modulation strategy. Monocarboxylic acid was introduced as a modulator to regulate the crystallinity via competitive complexation and thus concomitantly control the film-forming state during membrane growth. Through adjusting the ratio of modulator acid/linker acid, an appropriate balance between this structural “trade-off” was achieved. The resulting MOF membrane with moderate crystallinity and coherent morphology exhibits molecular sieving for H2/CO2 separation with selectivity up to 82.5.  相似文献   
8.
Metal–organic frameworks (MOFs) are considered ideal membrane candidates for energy-efficient separations. However, the MOF membrane amount to date is only a drop in the bucket compared to the material collections. The fabrication of an arbitrary MOF membrane exhibiting inherent separation capacity of the material remains a long-standing challenge. Herein, we report a MOF modular customization strategy by employing four MOFs with diverse structures and physicochemical properties and achieving innovative defect-free membranes for efficient separation validation. Each membrane fully displays the separation potential according to the MOF pore/channel microenvironment, and consequently, an intriguing H2/CO2 separation performance sequence is achieved (separation factor of 1656–5.4, H2 permeance of 964–2745 gas permeation unit). Taking advantage of this strategy, separation performance can be manipulated by a non-destructive modification separately towards the MOF module. This work establishes a universal full-chain demonstration for membrane fabrication-separation validation-microstructure modification and opens an avenue for exclusive customization of membranes for important separations.  相似文献   
9.
The urgent need for fresh water resource is a public issue facing the world. Solar distillation for seawater desalination is a promising freshwater production method. Interfacial solar evaporation systems based on 2D photo-thermal membranes have been widely studied, but salt pollution is one of the main challenges for solar distillation. In order to solve this problem, a hydrophilic three-dimensional (3D) porous photo-thermal fiber felt (PFF) was obtained by one-step method, through a simple polydopamine (PDA) coating method with hydrophobic graphite felt as a substrate. The PFF had a good evaporation rate of 1.48 kg m?2 h-1 and its corresponding light-vapor conversion efficiency reached 87.4%. In addition, the PFF exhibited an excellent salt-resistant ability when applied to photo-thermal evaporation of high-salinity seawater with 10 wt% NaCl, owing to its intrinsic 3D macroporous structure for the migration circulation of salt ions. The development of the PFF offers a new route for the exploration of salt-resistant photo-thermal materials and is promising for the practical application of solar distillation.  相似文献   
10.
分子筛膜具有规整的微孔结构(<1 nm), 耐高温高压、 抗有机溶剂, 在液相和气相小分子分离中受到广泛关注. 分子筛膜可以与催化反应耦合于一体构成膜反应器, 使反应过程与组分分离同时进行, 促进反应平衡移动, 达到反应强化的效果. 本文概述了近十年不同类型分子筛膜反应器在催化反应中的应用研究进展, 并对分子筛膜反应器未来的发展趋势进行了展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号